大數(shù)據(jù)時(shí)代的企業(yè)營銷可以利用大數(shù)據(jù)技術(shù)整合新型數(shù)據(jù)和傳統(tǒng)數(shù)據(jù),整合之后再進(jìn)行大數(shù)據(jù)分析,從而更全面地理解消費(fèi)者費(fèi)者信息,細(xì)分客戶群,然后對每個群體采取特殊行動,即精準(zhǔn)營銷。說到大數(shù)據(jù)精準(zhǔn)營銷,不得不提到精準(zhǔn)營銷的關(guān)鍵要素。今天我們就來分享一下大數(shù)據(jù)精準(zhǔn)營銷的七個關(guān)鍵要素!
用戶畫像是根據(jù)用戶社會屬性、生活習(xí)慣和消費(fèi)行為等信息而抽象出的一個標(biāo)簽化的用戶模型。
具體包含以下幾個維度:
用戶固定特征:性別,年齡,地域,教育水平,生辰八字,職業(yè),星座
用戶興趣特征:興趣愛好,使用APP,網(wǎng)站,瀏覽/收藏/評論內(nèi)容,品牌偏好,產(chǎn)品偏好
用戶社會特征:生活習(xí)慣,婚戀,社交/信息渠道偏好,宗教信仰,家庭成分
用戶消費(fèi)特征:收入狀況,購買力水平,商品種類,購買渠道喜好,購買頻次
用戶動態(tài)特征:當(dāng)下時(shí)間,需求,正在前往的地方,周邊的商戶,周圍人群,新聞事件如何生成用戶精準(zhǔn)畫像大致分成三步。
1.數(shù)據(jù)采集和清理數(shù)據(jù):用已知預(yù)測未知
首先得掌握繁雜的數(shù)據(jù)源。包括用戶數(shù)據(jù)、各式活動數(shù)據(jù)、電子郵件訂閱數(shù)、線上或線下數(shù)據(jù)庫及客戶服務(wù)信息等。這個是累積數(shù)據(jù)庫;這里面最基礎(chǔ)的就是如何收集網(wǎng)站/APP用戶行為數(shù)據(jù)。比如當(dāng)你登陸某網(wǎng)站,其Cookie就一直駐留在瀏覽器中,當(dāng)用戶觸及的動作,點(diǎn)擊的位置,按鈕,點(diǎn)贊,評論,粉絲,還有訪問的路徑,可以識別并記錄他/她的所有瀏覽行為,然后持續(xù)分析瀏覽過的關(guān)鍵詞和頁面,分析出他的短期需求和長期興趣。還可以通過分析朋友圈,獲得非常清晰獲得對方的工作,愛好,教育等方面,這比個人填寫的表單,還要更全面和真實(shí)。
我們用已知的數(shù)據(jù)尋找線索,不斷挖掘素材,進(jìn)行用戶行為分析,這樣不但可以鞏固老會員,也可以分析出未知的顧客與需求,進(jìn)一步開發(fā)市場。
2.用戶分群:分門別類貼標(biāo)簽
描述分析是最基本的分析統(tǒng)計(jì)方法,描述統(tǒng)計(jì)分為兩大部分:數(shù)據(jù)描述和指標(biāo)統(tǒng)計(jì)。數(shù)據(jù)描述:用來對數(shù)據(jù)進(jìn)行基本情況的刻畫,包括數(shù)據(jù)總數(shù),范圍,數(shù)據(jù)來源。指標(biāo)統(tǒng)計(jì):把分布,對比,預(yù)測指標(biāo)進(jìn)行建模。這里常常是Data mining的一些數(shù)學(xué)模型,像響應(yīng)率分析模型,客戶傾向性模型,這類分群使用Lift圖,用打分的方法告訴你哪一類客戶有較高的接觸和轉(zhuǎn)化的價(jià)值。
在分析階段,數(shù)據(jù)會轉(zhuǎn)換為影響指數(shù),進(jìn)而可以做"一對一"的精準(zhǔn)營銷。舉個例子,一個80后客戶喜歡在生鮮網(wǎng)站上早上10點(diǎn)下單買菜,晚上6點(diǎn)回家做飯,周末喜歡去附近吃日本料理,經(jīng)過搜集與轉(zhuǎn)換,就會產(chǎn)生一些標(biāo)簽,包括"80后""生鮮""做飯""日本料理"等等,貼在消費(fèi)者身上。
3.制定策略:優(yōu)化再調(diào)整
有了用戶畫像之后,便能清楚了解需求,在實(shí)際操作上,能深度經(jīng)營顧客關(guān)系,甚至找到擴(kuò)散口碑的機(jī)會。例如上面例子中,若有生鮮的打折券,日本餐館最新推薦,營銷人員就會把適合產(chǎn)品的相關(guān)信息,精準(zhǔn)推送這個消費(fèi)者的手機(jī)中;針對不同產(chǎn)品發(fā)送推薦信息,同時(shí)也不斷通過滿意度調(diào)查,跟蹤碼確認(rèn)等方式,掌握顧客各方面的行為與偏好。
除了顧客分群之外,營銷人員也在不同時(shí)間階段觀察成長率和成功率,前后期對照,確認(rèn)整體經(jīng)營策略與方向是否正確;若效果不佳,又該用什么策略應(yīng)對。反復(fù)試錯并調(diào)整模型,做到循環(huán)優(yōu)化。
這個階段的目的是提煉價(jià)值,再根據(jù)客戶需求精準(zhǔn)營銷,最后追蹤客戶反饋的信息,完成閉環(huán)優(yōu)化。
我們從數(shù)據(jù)整合導(dǎo)入開始,聚合數(shù)據(jù),在進(jìn)行數(shù)據(jù)的分析挖掘。數(shù)據(jù)分析和挖掘還是有一些區(qū)別。數(shù)據(jù)分析重點(diǎn)是觀察數(shù)據(jù),單純的統(tǒng)計(jì),看KPI的升降原因。而數(shù)據(jù)挖掘從細(xì)微和模型角度去研究數(shù)據(jù),從學(xué)習(xí)集、訓(xùn)練集發(fā)現(xiàn)知識規(guī)則,除了一些比較商業(yè)化的軟件SAS,WEKA功能強(qiáng)大的數(shù)據(jù)分析挖掘軟件,這邊還是更推薦使用R,Python,因?yàn)镾AS,SPSS本身比較昂貴,也很難做頁面和服務(wù)級別的API,而Python和R有豐富的庫,可以類似WEKA的模塊,無縫交互其他API和程序,這里還需要熟悉數(shù)據(jù)庫,Hadoop等。
在執(zhí)行大數(shù)據(jù)分析的3小時(shí)內(nèi),就可以輕松完成以下的目標(biāo):精準(zhǔn)挑選出1%的VIP顧客發(fā)送390份問卷,全部回收 問卷寄出3小時(shí)內(nèi)回收35%的問卷 5天內(nèi)就回收了超過目標(biāo)數(shù)86%的問卷數(shù)所需時(shí)間和預(yù)算都在以往的10%以下。
這是怎么做到在問卷發(fā)送后的3個小時(shí)就回收35%?那是因?yàn)閿?shù)據(jù)做到了發(fā)送時(shí)間的"一對一定制化",利用數(shù)據(jù)得出,A先生最可能在什么時(shí)間打開郵件就在那個時(shí)間點(diǎn)發(fā)送問卷。
舉例來說,有的人在上班路上會打開郵件,但如果是開車族,并沒有時(shí)間填寫答案,而搭乘公共交通工具的人,上班路上的時(shí)間會玩手機(jī),填寫答案的概率就高,這些都是數(shù)據(jù)細(xì)分受眾的好處。
“預(yù)測”能夠讓你專注于一小群客戶,而這群客戶卻能代表特定產(chǎn)品的大多數(shù)潛在買家。當(dāng)我們采集和分析用戶畫像時(shí),可以實(shí)現(xiàn)精準(zhǔn)營銷。這是最直接和最有價(jià)值的應(yīng)用,廣告主可以通過用戶標(biāo)簽來發(fā)布廣告給所要觸達(dá)的用戶,這里面又可以通過上圖提到的搜索廣告,展示社交廣告,移動廣告等多渠道的營銷策略,營銷分析,營銷優(yōu)化以及后端CRM/供應(yīng)鏈系統(tǒng)打通的一站式營銷優(yōu)化,全面提升ROI。
我們再說一說營銷時(shí)代的變遷,傳統(tǒng)的企業(yè)大多還停留在“營銷1.0”時(shí)代,以產(chǎn)品為中心,滿足傳統(tǒng)的消費(fèi)者需求,而進(jìn)入“營銷2.0”,以社會價(jià)值與品牌為使命,也不能完全精準(zhǔn)對接個性化需求。進(jìn)入營銷3.0的數(shù)據(jù)時(shí)代,我們要對每個消費(fèi)者進(jìn)行個性化匹配,一對一營銷,甚至精確算清楚成交轉(zhuǎn)化率,提高投資回報(bào)比。
大數(shù)據(jù)精準(zhǔn)營銷
大數(shù)據(jù)最大的價(jià)值不是事后分析,而是預(yù)測和推薦,我就拿電商舉例,"精準(zhǔn)推薦"成為大數(shù)據(jù)改變零售業(yè)的核心功能。譬如服裝網(wǎng)站Stitch fix例子,在個性化推薦機(jī)制方面,大多數(shù)服裝訂購網(wǎng)站采用的都是用戶提交身形、風(fēng)格數(shù)據(jù)+編輯人工推薦的模式,Stitch Fix不一樣的地方在于它還結(jié)合了機(jī)器算法推薦。這些顧客提供的身材比例,主觀數(shù)據(jù),加上銷售記錄的交叉核對,挖掘每個人專屬的服裝推薦模型。 這種一對一營銷是最好的服務(wù)。
數(shù)據(jù)整合改變了企業(yè)的營銷方式,現(xiàn)在經(jīng)驗(yàn)已經(jīng)不是累積在人的身上,而是完全依賴消費(fèi)者的行為數(shù)據(jù)去做推薦。未來,銷售人員不再只是銷售人員,而能以專業(yè)的數(shù)據(jù)預(yù)測,搭配人性的親切互動推薦商品,升級成為顧問型銷售。
關(guān)于預(yù)測營銷的技術(shù)能力,有幾種選擇方案:
1、使用預(yù)測分析工作平臺,然后以某種方法將模型輸入活動管理工具;
2、以分析為動力的預(yù)測性活動外包給市場服務(wù)提供商;
3、評估并購買一個預(yù)測營銷的解決方案,比如預(yù)測性營銷云和多渠道的活動管理工具。
但無論哪條路,都要確定三項(xiàng)基本能力:
1)連接不同來源的客戶數(shù)據(jù),包括線上,線下,為預(yù)測分析準(zhǔn)備好數(shù)據(jù) ;
2)分析客戶數(shù)據(jù),使用系統(tǒng)和定制預(yù)測模型,做高級分析 ;
3)在正確時(shí)間,正確客戶,正確的場景出發(fā)正確行為,可能做交叉銷售,跨不同營銷系統(tǒng)。
預(yù)測客戶購買可能性的行業(yè)標(biāo)準(zhǔn)是RFM模型(最近一次消費(fèi)R,消費(fèi)頻率F,消費(fèi)金額M),但模型應(yīng)用有限,本質(zhì)是一個試探性方案,沒有統(tǒng)計(jì)和預(yù)測依據(jù)。“過去的成績不能保證未來的表現(xiàn)”,RFM只關(guān)注過去,不去將客戶當(dāng)前行為和其他客戶當(dāng)前行為做對比。這樣就無法在購買產(chǎn)品之前識別高價(jià)值客戶。
我們聚焦的預(yù)測模型,就是為了在最短時(shí)間內(nèi)對客戶價(jià)值產(chǎn)生最大影響。這里列舉一些其他模型參考:
參與傾向模型,預(yù)測客戶參與一個品牌的可能性,參與定義可以多元,比如參加一個活動,打開電子郵件,點(diǎn)擊,訪問某頁面。可以通過模型來確定EDM的發(fā)送頻率。并對趨勢做預(yù)測,是增加還是減少活動。
錢包模型,就是為每個客戶預(yù)測最大可能的支出,定義為單個客戶購買產(chǎn)品的最大年度支出。然后看增長模型,如果當(dāng)前的總目標(biāo)市場比較小,但未來可能很大,就需要去發(fā)現(xiàn)這些市場。
價(jià)格優(yōu)化模型,就是能夠去最大限度提升銷售,銷量或利潤的架構(gòu),通過價(jià)格優(yōu)化模型為每個客戶來定價(jià),這里需要對你想要的產(chǎn)品開發(fā)不同的模型,或者開發(fā)通用,可預(yù)測的客戶價(jià)格敏感度的模型,確定哪一塊報(bào)價(jià)時(shí)對客戶有最大的影響。
關(guān)鍵字推薦模型,關(guān)鍵字推薦模型可以基于一個客戶網(wǎng)絡(luò)行為和購買記錄來預(yù)測對某個內(nèi)容的喜愛程度,預(yù)測客戶對什么熱點(diǎn),爆款感興趣,營銷者使用這種預(yù)測結(jié)果為特定客戶決定內(nèi)容營銷主題。
預(yù)測聚集模型,預(yù)測聚集模型就是預(yù)測客戶會歸為哪一類。
去年人工智能特別火,特別是深度學(xué)習(xí)在機(jī)器視覺,語言識別,游戲AI上的突飛猛進(jìn),以至于人們開始恐慌人工智能是不是已經(jīng)可以接管人類工作,我個人是對新技術(shù)有著強(qiáng)烈的興趣,也非常看好新科技,數(shù)據(jù)與現(xiàn)實(shí)的關(guān)聯(lián)。
在零售店買單的時(shí)候經(jīng)常被詢問“你有沒有購物卡”,當(dāng)我說沒有收銀員會趕緊勸我免費(fèi)開通,有打折優(yōu)惠,只需要填個手機(jī)號和郵箱,后面就可以針對我的購買記錄做營銷活動,而當(dāng)我下次進(jìn)來,他們就讓我報(bào)出電話號碼做消費(fèi)者識別,當(dāng)時(shí)我想如果做到人臉識別,豈不是更方便,刷臉就可以買單。而這個場景在去年也有了實(shí)驗(yàn),螞蟻金服研發(fā)出了一個生物識別機(jī)器人,叫螞可Mark,據(jù)說其認(rèn)臉能力已經(jīng)超越了人類肉眼的能力。還有VR購物,Amazon推出的無收銀員商店Amazon Go,通過手勢識別,物聯(lián)網(wǎng)和后續(xù)數(shù)據(jù)挖掘等技術(shù)實(shí)現(xiàn)購物體驗(yàn)。
針對營銷領(lǐng)域,主要有以下三種預(yù)測營銷技術(shù):
1、無監(jiān)督的學(xué)習(xí)技術(shù)
無監(jiān)督學(xué)習(xí)技術(shù)能識別數(shù)據(jù)中的隱藏模式,也無須明確預(yù)測一種結(jié)果。比如在一群客戶中發(fā)現(xiàn)興趣小組,也許是滑雪,也許是長跑,一般是放在聚類算法,揭示數(shù)據(jù)集合中 真實(shí)的潛在客戶。所謂聚類,就是自動發(fā)現(xiàn)重要的客戶屬性,并據(jù)此做分類。
2、 有監(jiān)督的學(xué)習(xí)技術(shù)
通過案例訓(xùn)練機(jī)器,學(xué)習(xí)并識別數(shù)據(jù),得到目標(biāo)結(jié)果,這個一般是給定輸入數(shù)據(jù)情況下預(yù)測,比如預(yù)測客戶生命周期價(jià)值,客戶與品牌互動的可能性,未來購買的可能性。
3、強(qiáng)化學(xué)習(xí)技術(shù)
這種是利用數(shù)據(jù)中的潛質(zhì)模式,精準(zhǔn)預(yù)測最佳的選擇結(jié)果,比如對某用戶做促銷應(yīng)該提供哪些產(chǎn)品。這個跟監(jiān)督學(xué)習(xí)不同,強(qiáng)化學(xué)習(xí)算法無須僅需輸入和輸出訓(xùn)練,學(xué)習(xí)過程通過試錯完成。
從技術(shù)角度看,推薦模型應(yīng)用了協(xié)同過濾,貝葉斯網(wǎng)絡(luò)等算法模型。強(qiáng)化學(xué)習(xí)是被Google Brain團(tuán)隊(duì)的負(fù)責(zé)人Jeff Dean認(rèn)為是最有前途的AI研究方向之一。最近Google的一個AI團(tuán)隊(duì)DeepMind發(fā)表了一篇名為《學(xué)會強(qiáng)化學(xué)習(xí)》的論文。
按團(tuán)隊(duì)的話來說,叫做“學(xué)會學(xué)習(xí)”的能力,或者叫做能解決類似相關(guān)問題的歸納能力。除了強(qiáng)化學(xué)習(xí),還在遷移學(xué)習(xí)。遷移學(xué)習(xí)就是把一個通用模型遷移到一個小數(shù)據(jù)上,使它個性化,在新的領(lǐng)域也能產(chǎn)生效果,類似于人的舉一反三、觸類旁通。
以上就是為大家整理的關(guān)于大數(shù)據(jù)精準(zhǔn)營銷的七大關(guān)鍵要素的全部內(nèi)容。大數(shù)據(jù)時(shí)代,各種各樣的數(shù)據(jù)撲面而來。如何對這些數(shù)據(jù)進(jìn)行分析并進(jìn)行利用是企業(yè)要面對的一個非常重要的問題,同時(shí)也是企業(yè)提高自身能力的關(guān)鍵,希望今天的文章對你有幫助。
[免責(zé)聲明]
文章標(biāo)題: 大數(shù)據(jù)精準(zhǔn)營銷的七大關(guān)鍵要素
文章內(nèi)容為網(wǎng)站編輯整理發(fā)布,僅供學(xué)習(xí)與參考,不代表本網(wǎng)站贊同其觀點(diǎn)和對其真實(shí)性負(fù)責(zé)。如涉及作品內(nèi)容、版權(quán)和其它問題,請及時(shí)溝通。發(fā)送郵件至36dianping@36kr.com,我們會在3個工作日內(nèi)處理。